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Outline

• Background

• Experimental Setup & Data Analysis

• Fixed Frequency vs Broadband Results

• Reconstructing Acoustic Data
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Background – ACCObeam

RM-1 RM-2

RM-3 RM-4

Utilizes radial modes of laterally stiffened 
piezoelectric discs
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Background – ACCObeam

• Impedance measurement to find resonant frequencies

• 1st mode: 34.0 kHz, 2nd mode: 112.0 kHz, 3rd mode: 176.7 kHz, 4th mode: 

240.1 kHz
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Background – Broadband Signals

• Linear Chirp

− Instantaneous frequency that increases linearly from the start frequency 𝑓0 to the 
end frequency 𝑓1 over some period 𝑇:

𝑓𝑙𝑖𝑛 𝑡 = sin
𝑓1 − 𝑓0 𝜋

𝑇
𝑡2 + 2𝜋𝑓0𝑡

− Windowing function applied after

▪ Rectangle window zeroes signal outside of 𝑡=[0,𝑇]

▪ Tukey window uses cosine half lobes
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Background – Broadband Signals

• Gaussian Pulse
− By convolution theorem, a frequency shifted Gaussian in Fourier 

space is a Gaussian enveloped cosine in time:
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− Illustrates why use broadband signals – wider spread in frequency 
domain leads to tighter waveforms in space/time
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Experimental Setup

• Clamped transducer mounted near wall of reservoir of water connected to 

waveform generator

• Hydrophone rigged to translation stage and connected to oscilloscope

− Set up to move equally spaced intervals across transducer face in a plane of the 
reservoir

− Controlled programmatically 

• Time measurement taken at each spatial point, averaged over 32 waveforms
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Experimental Setup

• Hydrophone and translation stage 

positioned in front of transducer.

• Hydrophone records a “slice” of the 

beam profile
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Data Acquisition and Analysis

• Measurement time scales with spatial resolution

• Time data post-processed to plot beam-profile
− Fixed Frequency

▪ Maximum peak to peak measurement at each spatial point extracted 
and plotted

− Broadband

▪ Cross-correlation of measured time data and input waveform to select 
first-arrival

▪ Each time array is Fourier transformed into the frequency domain

▪ Amplitude of frequency at each spatial point plotted

▪ Animated as GIFs
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Fixed Frequency:

Experiments and Simulations

Experiments Simulation
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Experiments:

Extracted Freq. Beam Profiles
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Extracted Frequency Animations

Slide 12
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Broadband Operation

• Bandwidth of operation
− Full width at half maximum (FWHM) characterization changes with 

distance

− For further distances, the 4th mode dominates the 3rd and merge 
together
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Broadband Operation



154/5/21

Broadband Operation

• First resonant mode (34 kHz) is difficult to excite with a linear chirp because 

of low number of cycles achievable in the burst duration

• Gaussian pulse is significantly faster than the linear chirp, though overall 

weaker

• Intermediate frequencies yield strong beams (3rd-4th)
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Reconstructing Data for 

Arbitrary Input from Linear Chirp Data

• The input 𝑥(𝑡) and output 𝑦(𝑡) of a LTI system are related 

by the transfer function:

𝑦 𝑡 = ℎ 𝑡 ⋆ 𝑥 𝑡 ՞
ℱ
𝑌 𝜔 = 𝐻 𝜔 𝑋(𝜔)

• Using the experimental linear chirp data, we can find the 

transfer function
− Given some input 𝑥𝑠𝑦𝑛𝑡ℎ(𝑡), we can find 𝑦𝑠𝑦𝑛𝑡ℎ(𝑡)

− With knowledge of 𝑦𝑔𝑜𝑎𝑙(𝑡), we can find a 𝑥𝑔𝑜𝑎𝑙(𝑡)

• Transfer function only valid for window region of chirp 

data
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Reconstructing Data 

– Preliminary Results
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Reconstructing Data 

– Preliminary Results
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Reconstructing Data 

– Preliminary Results
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Reconstructing Data 

– Preliminary Results
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Reconstructing Data 

– Preliminary Results
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